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Agent Environment
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Reinforcement Learning Favors Quantifiable Tasks
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The Limits of Classical Reinforcement Learning
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Reinforcement Learning from Human Feedback with Reward Modelling
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Agent Environment

Reward Model Human Feedback

Reproduced from Christiano et al., 2017 Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich

Proxy Objective:Goal:

Where:



Rewards from Pairwise Trajectory Preferences
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Bradley-Terry links preferences to rewards:



Rewards from Pairwise Trajectory Preferences

8 Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich

Bradley-Terry links preferences to rewards:



Past and Present of RLHF
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▪ Emerged from preference-based RL.

Cheng et al., 2011; Akrour et al., 2011

▪ RL for fine-tuning foundation models:

ChatGPT, GPT4.

▪ Increasing relevance due to use of RL

in the real world.

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich Compare Ouyang et al., 2022
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Self-Supervised Learning
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Learn without explicit supervision!

ContrastivePredictive

The squirrel is climbing the _____

tree

skyscraper

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich

Challenge: Represent distribution. Challenge: Find hard negatives.



Self-Supervised State Representation Learning
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Autoencoder



Self-Supervised World Model Learning
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"Maintain speed"

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich

Trees stay in place, humans may move.



World Models Enable Query Synthesis
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"Imagination": Repeatedly sample

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich



Benefits of Pretraining 

for RLHF
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Sample Efficiency Safety RobustnessTransfer Reward Exploration



Sample Efficiency for Preference Learning
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Learn concepts first, then preferences.

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich

Few highly informative dimensions

Light conditions

Distance to pedestrian

Speed limit

Many noisy dimensions

Green channel of first pixel

Red channel of first pixel

Blue channel of last pixel

Challenge: Auxiliary task design.



Transfer Enabled by Representations
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▪ Representations can be task-independent.

▪ Can reuse representations for faster adaptation.

▪ Can scale training over multiple tasks.

▪ Potentially even adapt entirely in imagination.

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich Icons: uxwing.com



Safety Through Query Synthesis
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Instead of

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich

Imagined crashes do not hurt.



Robustness Through Query Synthesis

19

▪ Synthesis enables feedback on

rare events, outliers and 

uncertain regions.

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich



Reward Exploration with World Models
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▪ Challenge in RL: Exploration / exploitation tradeoff.

▪ Exploration is commonly incentivized with

intrinsic motivation.

▪ Example: Reward based on estimated state novelty.

▪ Problem: The policy is optimized to seek states that 

were previously novel – but are not anymore! Chases 

an outdated concept of novelty.

▪ Possible solution: Optimize exploration policy "in 

imagination", deploy "in real" (Plan2Explore).

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich Sekar et al., 2020: Planning to Explore via Self-Supervised World Models

State Space Exploration Reward Space Exploration

▪ In RLHF additionally:

Reward exploration!

▪ Similar techniques can be used.

▪ Reward uncertainty in the

reward model.

▪ Plan2Explore approach may be 

used here!



Conclusion
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▪ RL can enable new use-cases for CPS.

▪ Human feedback is crucial to make this practical.

▪ Self-supervised pretraining helps with

• sample-efficiency,

• transfer learning,

• safety,

• robustness and

• reward exploration.

Timo Kaufmann, RLHF for CPSAIML Group, LMU Munich

Questions?
timokaufmann.com @timokauf

https://timokaufmann.com/
https://twitter.com/timokauf
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