

Reinforcement Learning from Human Feedback for Cyber-Physical Systems

On the Potential of Self-Supervised Pretraining

Timo Kaufmann, Viktor Bengs, Eyke Hüllermeier LMU Munich

Hamburg, 29.03.2023

Bringing Reinforcement Learning into the Real World

Part of the ONE Munich Strategy Forum Project: Next generation Human-Centered Robotics

Timo Kaufmann, RLHF for CPS

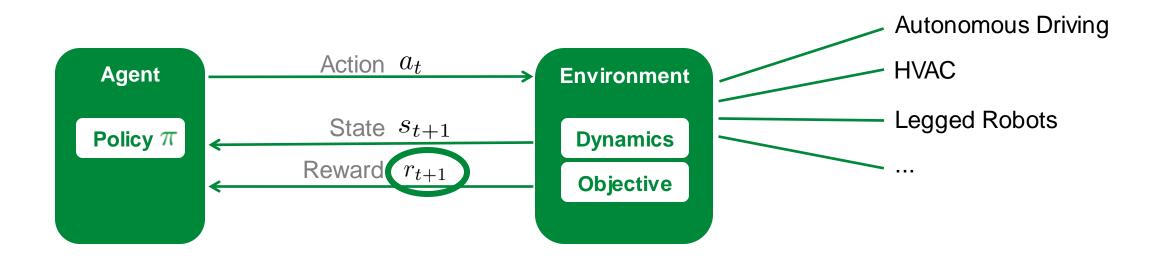
Image: Midjourney

https://human-centered-robotics.de

Reinforcement Learning from Human Feedback

3 AIML Group, LMU Munich

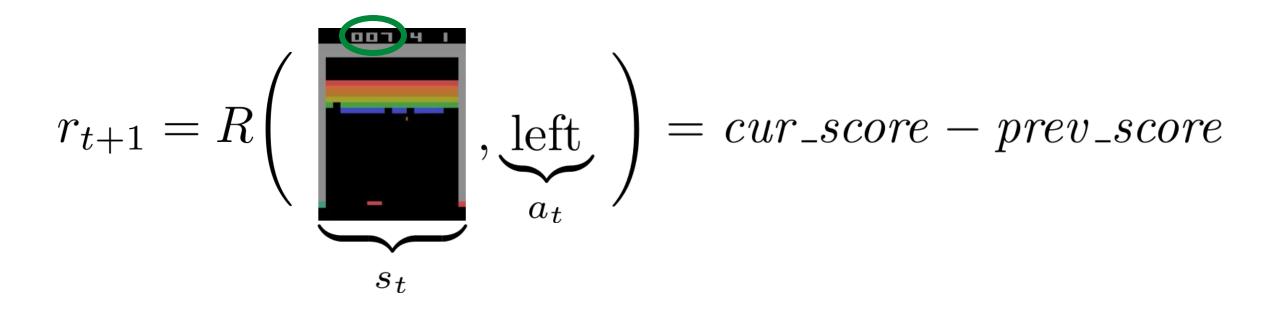
Reinforcement Learning for Cyber-Physical Systems



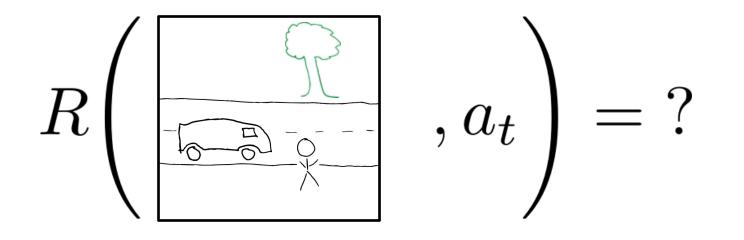
Objective:
$$\max \sum_t \gamma^t r_t$$

4 AIML Group, LMU Munich

Reinforcement Learning Favors Quantifiable Tasks

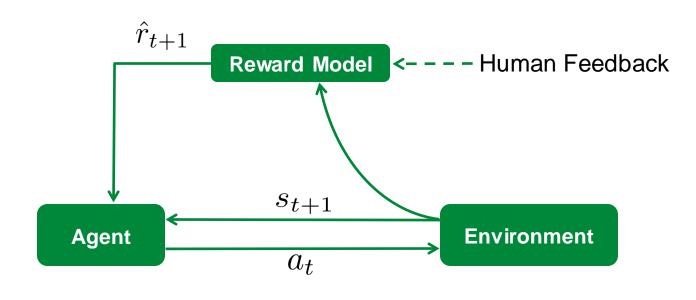


The Limits of Classical Reinforcement Learning



6 AIML Group, LMU Munich

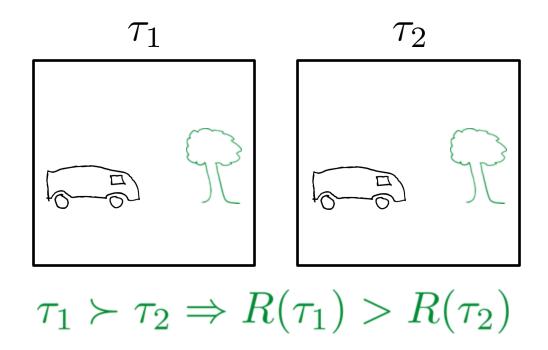
Reinforcement Learning from Human Feedback with Reward Modelling



Goal: $\tau_1 \succ \tau_2$ Where: $\tau_i = (s_1^i, a_1^i, s_2^i, a_2^i, \dots, s_n^i, a_n^i)$

Proxy Objective:
$$\max \sum_t \gamma^t \hat{r}_t$$

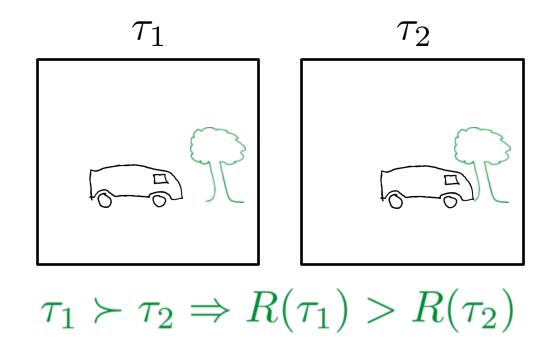
Rewards from Pairwise Trajectory Preferences



Bradley-Terry links preferences to rewards:

 $P[\tau_1 \succ \tau_2] = \operatorname{sofmax}_1(R(\tau_1), R(\tau_2))$

Rewards from Pairwise Trajectory Preferences

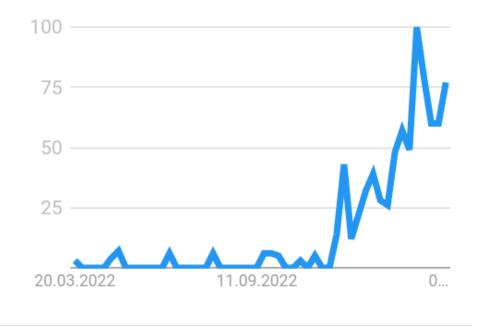


Bradley-Terry links preferences to rewards:

 $P[\tau_1 \succ \tau_2] = \operatorname{sofmax}_1(R(\tau_1), R(\tau_2))$

Past and Present of RLHF

- Emerged from preference-based RL. Cheng et al., 2011; Akrour et al., 2011
- RL for fine-tuning foundation models: ChatGPT, GPT4.
- Increasing relevance due to use of RL in the real world.



Google Trends

9 AIML Group, LMU Munich

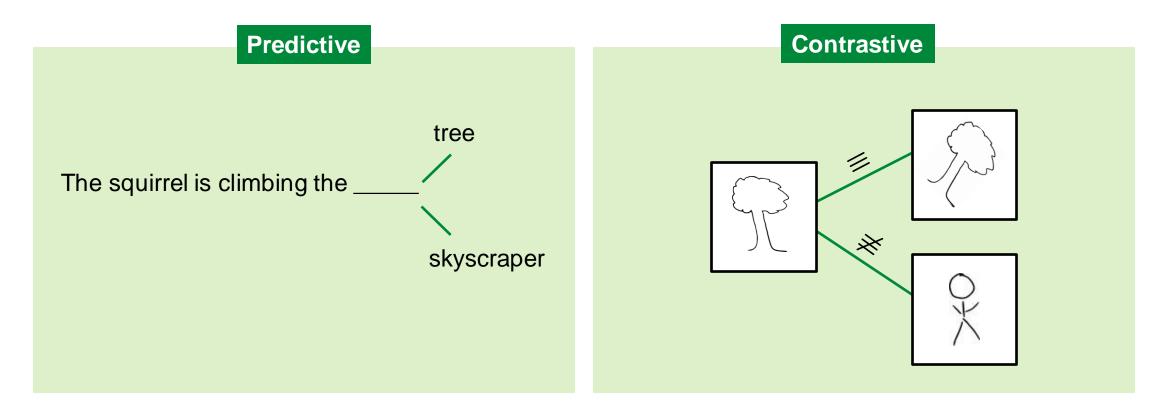
Compare Ouyang et al., 2022

Self-Supervised Pretraining

10 AIML Group, LMU Munich

Self-Supervised Learning

Learn without explicit supervision!

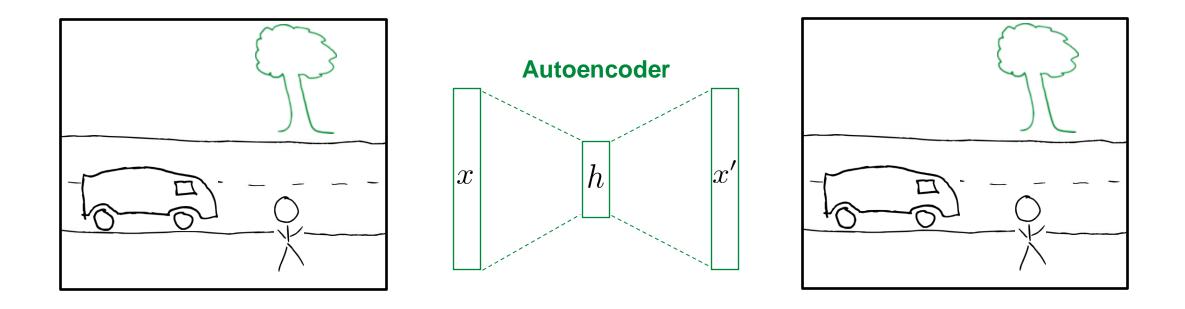


Challenge: Represent distribution.

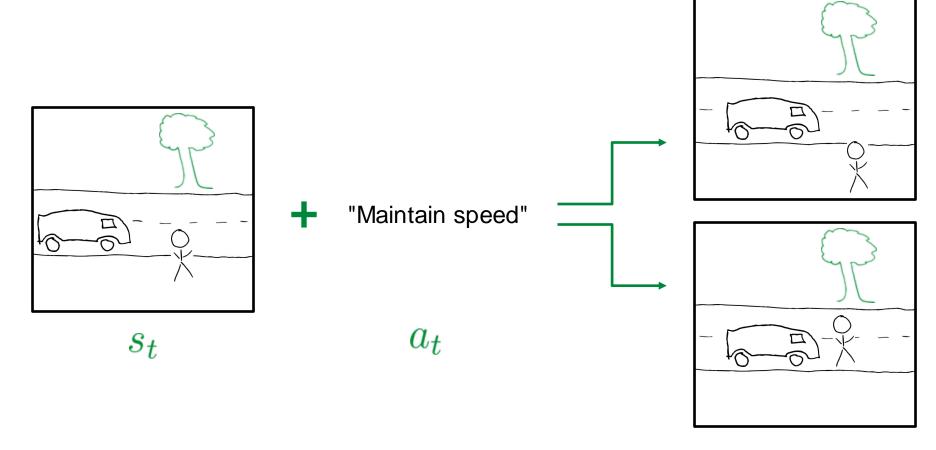
Challenge: Find hard negatives.

11 AIML Group, LMU Munich

Self-Supervised State Representation Learning



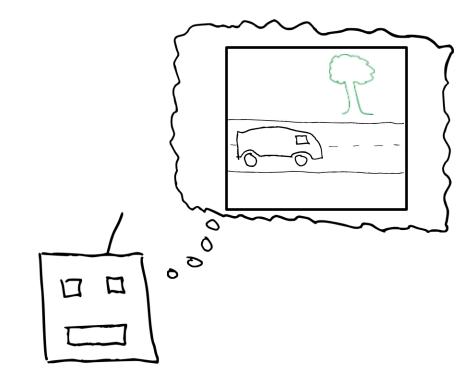
Self-Supervised World Model Learning



 $\hat{s}_{t+1} \sim p_{\theta}(\hat{s}_{t+1} \mid s_t, a_t)$

Trees stay in place, humans may move.

World Models Enable Query Synthesis



"Imagination": Repeatedly sample

$$\hat{s}_{t+1} \sim p_{\theta}(\hat{s}_{t+1} \mid s_t, a_t)$$
$$a_{t+1} \sim \pi(\hat{s}_{t+1})$$

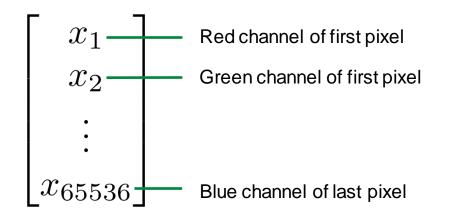
14 AIML Group, LMU Munich

Benefits of Pretraining for **RLHF**

Sample Efficiency Transfer Safety Robustness Reward Exploration

AIML Group, LMU Munich 15

Sample Efficiency for Preference Learning



 $\begin{array}{cccc} z_1 & & & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \ & \$

Many noisy dimensions

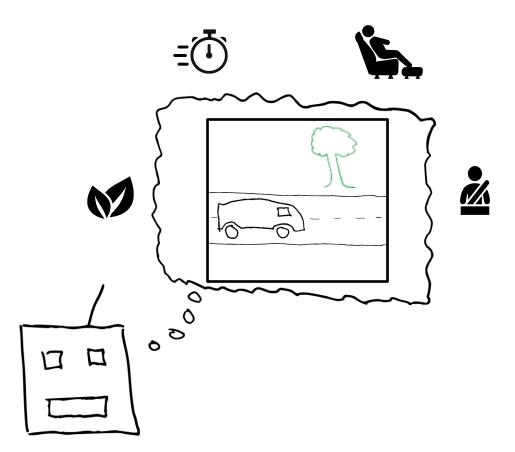
Few highly informative dimensions

Learn concepts first, then preferences.

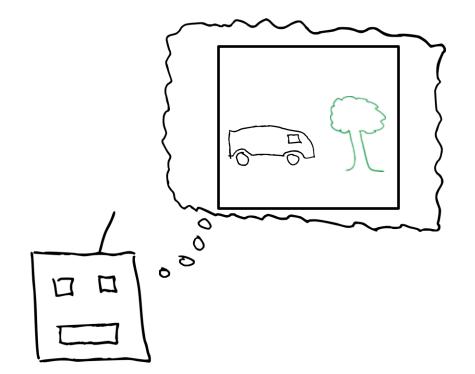
Challenge: Auxiliary task design.

Transfer Enabled by Representations

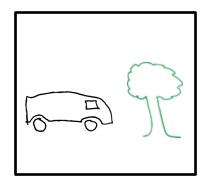
- Representations can be task-independent.
- Can reuse representations for faster adaptation.
- Can scale training over multiple tasks.
- Potentially even adapt entirely in imagination.



Safety Through Query Synthesis



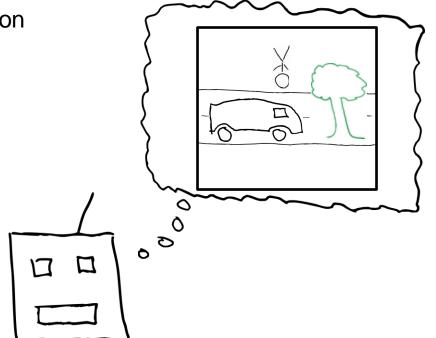
Instead of



Imagined crashes do not hurt.

Robustness Through Query Synthesis

 Synthesis enables feedback on rare events, outliers and uncertain regions.



19 AIML Group, LMU Munich

Reward Exploration with World Models

State Space Exploration

- Challenge in RL: Exploration / exploitation tradeoff.
- Exploration is commonly incentivized with intrinsic motivation. $r_t = r_t^{\text{task}} + r_t^{\text{intrinsic}}$
- Example: Reward based on estimated state novelty.
- Problem: The policy is optimized to seek states that were previously novel – but are not anymore! Chases an outdated concept of novelty.
- Possible solution: Optimize exploration policy "in imagination", deploy "in real" (Plan2Explore).

Reward Space Exploration

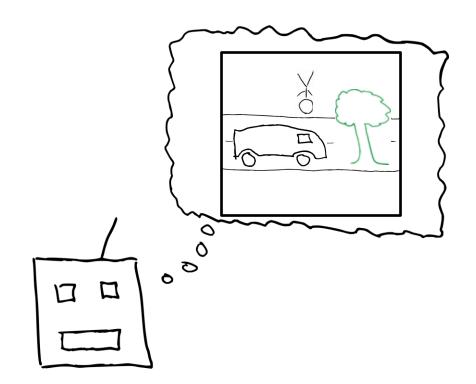
- In RLHF additionally: Reward exploration!
- Similar techniques can be used. $r_t = \hat{r}_t^{\text{task}} + r_t^{\text{intrinsic}}$
- Reward uncertainty in the reward model.
- Plan2Explore approach may be used here!

Conclusion

- RL can enable new use-cases for CPS.
- Human feedback is crucial to make this practical.

<u>• @timokauf</u>

- Self-supervised pretraining helps with
 - sample-efficiency,
 - transfer learning,
 - safety,
 - robustness and
 - reward exploration.



Questions?

21 AIML Group, LMU Munich

timokaufmann.com

References

- [Christiano et al., 2017]: Christiano, P. F., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017). Deep Reinforcement Learning from Human Preferences. Advances in Neural Information Processing Systems.
- [Ouyang et al., 2022]: Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Gray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., & Lowe, R. (2022). Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems.
- [Sekar et al., 2020]: Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., & Pathak, D. (2020). Planning to Explore via Self-Supervised World Models. Proceedings of the 37th International Conference on Machine Learning.
- [Kaufmann et al., 2023]: Kaufmann, T., Bengs, V., & Hüllermeier, E. (2023). Reinforcement Learning from Human Feedback for Cyber-Physical Systems: On the Potential of Self-Supervised Pretraining.

