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Abstract. In this paper, we advocate for the potential of reinforcement
learning from human feedback (RLHF) with self-supervised pretraining
to increase the viability of reinforcement learning (RL) for real-world
tasks, especially in the context of cyber-physical systems (CPS). We iden-
tify potential benefits of self-supervised pretraining in terms of the query
sample complexity, safety, robustness, reward exploration and transfer.
We believe that exploiting these benefits, combined with the generally
improving sample efficiency of RL, will likely enable RL and RLHF to
play an increasing role in CPS in the future.
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1 Introduction

Reinforcement learning (RL) considers the setting of learning behavior from
rewarded interaction with an environment. The reward function specifies the de-
sired behavior while the environment specifies the task dynamics. This setting
is well-suited for cyber-physical systems (CPS), where the system repeatedly
interacts with an environment to achieve some goal. RL can be used in this
setting to learn a controller for a cyber-physical system, i.e., a policy that can
choose appropriate actions based on the system’s inputs. Examples of RL for
CPS include applications to smart grids [18], Heating, Ventilation and Air Con-
ditioning (HVAC) [32], energy storage [31], autonomous driving [3], as well as
legged robots [43,39] and robotic manipulation [36].

One of the main challenges of applying RL to any task is measuring the
agent’s task performance in a way that is suitable for use as a reward function
(reward design). Many of the largest successes of RL, such as as reaching or even
exceeding human performance in the game of Go [37] and many Atari games [25],
have been in the domain of games which have goals that are well-defined and
easy to evaluate.

This is not the case for most real-world tasks however. Goals are often vague,
subjective and characterized by trade-offs. Misspecifying these objectives can
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lead to surprising behaviors as well as safety issues [2]. Knox et al. [13] studies
the challenges of reward design for autonomous driving, where the objective
is a mixture of objective factors such as time to destination, fuel consumption
and safety as well as subjective factors such as passenger experience. The right
balance of these components may depend on context, such as time of day or
the passenger’s mood. More generally, Dulac-Arnold et al. [8] identifies reward
design as one of the key challenges of applying RL to the real world.

RLHF is one way to cope with the challenge of reward design. Instead of
assuming that a reward function is part of the problem specification, RLHF
treats the reward function as part of the problem itself and attempts to learn
it from human feedback. This is commonly done by collecting pairwise prefer-
ence feedback over alternative agent trajectories (preference-based reinforcement
learning (PbRL) [42]) and using it to infer a reward function, but other feedback
modalities such as (imperfect) demonstrations [11], corrections [20], critiques [7]
or natural language [41] may be used as well.

Examples of RLHF include ChatGPT [28], an instance of a large language
model fine-tuned with RLHF to follow instructions [29] in a dialogue context.
Other examples from the language domain are summarization [40] and question
answering [27]. Beyond text, RLHF has been used to guide image generation [12].
RLHF has also been used in games [6] as well as simulated continuous control
tasks [6,17]. In the domain of CPS, existing applications of RLHF include robot-
to-human object handover [14] and robotic manipulation [5,38].

RLHF can greatly reduce the challenge of reward design by enabling us to
learn tasks that humans can judge, even if they are difficult to express in an
engineered reward function. This avoids the need to explicitly specify all objec-
tives or their trade-offs – those can be communicated by example instead. The
reward model can be trained to estimate human preferences directly from the
system’s sensor inputs. If the sensor inputs convey sufficient information, the
agent can even learn different trade-offs for different contexts. For example, an
internal camera in an autonomous vehicle could be used to judge the mood of
the passenger or detect the presence of a child and adapt the driving behavior
accordingly.

2 The Potential of Pretraining

Learning rewards directly from sensor inputs presents us with a new challenge
however, since these sensor inputs (especially when they are vision-based) are
often high-dimensional. High-dimensional state- and action spaces are already
a challenge for RL without human feedback [8]. In that setting the problem
is often tackled by data augmentation [44], representation learning [34,15] or
model-based RL [10].

The latter two approaches – representation learning and model-based RL –
can be considered instances of self-supervised learning [22,16], a form of learning
that tries to learn something about the structure of the input data from unlabeled
examples. This can be achieved by generating labels from the input data itself,
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such as training models to predict hidden parts of the input data or to determine
whether two data points are related (e.g., transformations of each other) or not.
Self-supervised learning is commonly used to learn representations or to initialize
networks which are then later fine-tuned to specific tasks. Since self-supervised
learning does not require any explicit human labels, it is possible to train on
large amounts of data. This has been an important driving factor behind recent
successes in the domain of language models [4].

In model-based RL, the self-supervised objective is to predict the environ-
ment dynamics, i.e., predict the next state from the current state and a chosen
action. The goal of state-representation learning is to learn a representation of
the agent’s state that makes downstream tasks, such as reward prediction or
policy learning, easier. Consider the example of an agent tasked with controlling
an autonomous car: While the raw state of an agent may consist of low-level
sensor inputs such as the pixels captured by a camera, the learned representa-
tion should capture information that is immediately relevant to the driving task
such as the car’s position relative to other cars and pedestrians in a higher-level
format. Such a representation can be learned from data that is already avail-
able, such as experiences of the environment dynamics [34], and can then enable
more sample-efficient learning of the downstream task, such as reward predic-
tion. See the overview by Lesort et al. [19] for a more detailed introduction to
state representation learning.

In this paper, we want to highlight the potential of self-supervised pretraining
in the form of state representation learning and world model learning to effec-
tively learn behavior from human feedback. We expect pretraining can improve
query sample complexity as well as the learning system’s safety and robust-
ness, allow for better exploration of the reward function and enable transfer of
knowledge between tasks.

Query sample complexity: Starting with a good state representation has the
potential to learn more accurate reward models while requiring fewer human
labels. Such a representation can be learned in a self-supervised manner from
unlabeled interactions with the environment [34] or as a side-effect of model-
based RL [26,10]. The learned representation is often more compact than
the original observation and may also integrate information over multiple
time-steps. This can be particularly beneficial in environments with high-
dimensional observations such as images captured by a camera.
Similar sample-complexity benefits have been observed in RL without human
feedback [34,45], where learned state representations can often decrease the
necessary amount of interaction with the environment or even enable the
application of RL to domains in which it was previously not feasible.
Metcalf et al. [24] explores this idea for RLHF and observes that by en-
coding environment dynamics in the state representation, i.e., choosing the
representation learning task in such a way that the representation of the
next state can be predicted from the current one with a simple linear layer,
results in a significant increase in sample efficiency.
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In addition to explicit representation learning, sample efficiency could also be
improved through data augmentation [30] as well as semi-supervised learn-
ing [30].

Safety: Instead of learning a state representation in isolation, it is also possible
to learn a full model of the environment dynamics (world model). A world
model provides the option of synthesizing queries, i.e., generating hypothet-
ical behavior for feedback. This changes the active learning setting from (re-
peated) pool-based sampling to membership query synthesis [1]. Since these
trajectories can be tailored to be informative about the human preferences,
this can increase the sample efficiency of the preference learning process. In
addition, synthesizing queries can increase the safety of the learning process
since potentially dangerous behavior can be tested without actually perform-
ing it in the real world. Needless to say that this is particularly important
when working with physical systems. Initial work has explored the potential
of synthesized queries in an RLHF context [33,23].
Another safety benefit of model-based RL is that it allows us to deploy sep-
arate policies in reality and in “imagination”. Imagination refers to training
that uses only interactions with the learned world model, not with the real
environment. While the imagination policy may be focused on exploration,
the real world policy may be focused on conservative data gathering.

Robustness: Synthesizing hypothetical behavior for feedback cannot only im-
prove the system’s safety, but may also contribute to the robustness and
generalization of the learned rewards. This is because the synthesized queries
can explore edge-cases that would rarely be encountered in the pool of ex-
periences. It is possible to actively optimize the queries to fill gaps in the
agent’s knowledge of the human preferences. The benefits of membership
query synthesis over pool-based active learning are discussed by Elreedy et
al. [9].

Reward exploration: Model-based RL can be used to improve the exploration
behavior of RL agents by learning an exploration policy that leads the agent
to novel states purely in imagination, which can then be deployed in the real
environment for efficient exploration. This avoids the issue of retrospective
novelty, where RL agents with intrinsic exploration bonuses optimize their
policy to visit states which they previously found novel – which, by definition,
they are not anymore once they are included in the training data.
This approach has successfully been applied for regular state-space explo-
ration [35]. Since reward-space exploration can be similarly important as
state-space exploration for RLHF [21], one might expect additional benefits
by applying this principle to reward-space exploration as well.

Transfer: Yet another benefit of representation- and model-learning is the pos-
sibility of transferring knowledge between tasks. Since a world model or state
representation that was learned for one task remains valid for any other task
with the same dynamics, this knowledge can be transferred and reward mod-
els for new tasks can be learned faster. A similar effect for model-based RL
without human feedback is discussed by Moerland et al. [26].
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3 Discussion and Conclusion

Learning controllers for cyber-physical systems has the potential of enabling
many new use cases with complex interactions and increased integration of mul-
tiple systems. This may be of use for many applications, such as robotics, smart
buildings and autonomous vehicles.

While to date applications of RL to real-world systems are sparse, the increas-
ing sample efficiency of RL combined with the increased applicability to many
tasks thanks to RLHF may cause that to change in the near future. Improving
the feedback-efficiency of RLHF with approaches such as the ones discussed in
this paper is therefore a promising area of future research. We believe that self-
supervised pretraining has many benefits to offer and could play a crucial part
in opening up many new use cases for cyber-physical systems.

Acknowledgements This research project/publication was supported by LMU-
excellent, funded by the Federal Ministry of Education and Research (BMBF)
and the Free State of Bavaria under the Excellence Strategy of the Federal Gov-
ernment and the Länder as well as by the Hightech Agenda Bavaria.

References

1. Aggarwal, C.C., Kong, X., Gu, Q., Han, J., Yu, P.S.: Active learning: A survey.
In: Data Classification: Algorithms and Applications. CRC Press (2014). https:
//doi.org/10.1201/b17320-23

2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P.F., Schulman, J., Mané, D.:
Concrete problems in AI safety. CoRR abs/1606.06565 (2016), http://arxiv.org/
abs/1606.06565

3. Bai, Z., gen Cai, B., Shangguan, W., Chai, L.: Deep reinforcement learning based
high-level driving behavior decision-making model in heterogeneous traffic. 2019
Chinese Control Conference (CCC) (2019)

4. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J.,
Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language mod-
els are few-shot learners. In: Advances in Neural Information Processing Systems
(2020)

5. Cabi, S., Colmenarejo, S.G., Novikov, A., Konyushova, K., Reed, S., Jeong, R.,
Zolna, K., Aytar, Y., Budden, D., Vecerik, M., Sushkov, O., Barker, D., Scholz,
J., Denil, M., de Freitas, N., Wang, Z.: Scaling data-driven robotics with reward
sketching and batch reinforcement learning. In: Proceedings of Robotics: Science
and Systems (2020). https://doi.org/10.15607/RSS.2020.XVI.076

6. Christiano, P.F., Leike, J., Brown, T.B., Martic, M., Legg, S., Amodei, D.: Deep re-
inforcement learning from human preferences. In: Advances in Neural Information
Processing Systems (2017)

7. Cui, Y., Niekum, S.: Active reward learning from critiques. In: 2018 IEEE Inter-
national Conference on Robotics and Automation, ICRA (2018). https://doi.org/
10.1109/ICRA.2018.8460854

https://doi.org/10.1201/b17320-23
https://doi.org/10.1201/b17320-23
https://doi.org/10.1201/b17320-23
https://doi.org/10.1201/b17320-23
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
https://doi.org/10.15607/RSS.2020.XVI.076
https://doi.org/10.15607/RSS.2020.XVI.076
https://doi.org/10.1109/ICRA.2018.8460854
https://doi.org/10.1109/ICRA.2018.8460854
https://doi.org/10.1109/ICRA.2018.8460854
https://doi.org/10.1109/ICRA.2018.8460854


6 T. Kaufmann et al.

8. Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C., Gowal, S.,
Hester, T.: Challenges of real-world reinforcement learning: Definitions, bench-
marks and analysis. Machine Learning 110(9) (2021). https://doi.org/10.1007/
s10994-021-05961-4

9. Elreedy, D., Atiya, A.F., Shaheen, S.I.: A novel active learning regression frame-
work for balancing the exploration-exploitation trade-off. Entropy 21(7) (2019).
https://doi.org/10.3390/e21070651

10. Hafner, D., Pasukonis, J., Ba, J., Lillicrap, T.P.: Mastering diverse domains
through world models. CoRR abs/2301.04104 (2023). https://doi.org/10.48550/
arXiv.2301.04104

11. Ibarz, B., Leike, J., Pohlen, T., Irving, G., Legg, S., Amodei, D.: Reward learn-
ing from human preferences and demonstrations in Atari. In: Advances in Neural
Information Processing Systems (2018)

12. Kazemi, H., Taherkhani, F., Nasrabadi, N.M.: Preference-based image generation.
In: IEEE Winter Conference on Applications of Computer Vision, WACV 2020
(2020). https://doi.org/10.1109/WACV45572.2020.9093406

13. Knox, W.B., Allievi, A., Banzhaf, H., Schmitt, F., Stone, P.: Reward (mis)design
for autonomous driving. CoRR abs/2104.13906 (2021), https://arxiv.org/abs/
2104.13906

14. Kupcsik, A.G., Hsu, D., Lee, W.S.: Learning dynamic robot-to-human object han-
dover from human feedback. CoRR abs/1603.06390 (2016), http://arxiv.org/
abs/1603.06390

15. Laskin, M., Srinivas, A., Abbeel, P.: CURL: Contrastive unsupervised representa-
tions for reinforcement learning. In: Proceedings of the 37th International Confer-
ence on Machine Learning, ICML 2020. vol. 119. PMLR (2020)

16. LeCun, Y., Misra, I.: Self-supervised learning: The dark mat-
ter of intelligence. Meta AI (2021), https://ai.facebook.com/blog/
self-supervised-learning-the-dark-matter-of-intelligence/, accessed: 2023-01-26

17. Lee, K., Smith, L.M., Abbeel, P.: PEBBLE: Feedback-efficient interactive rein-
forcement learning via relabeling experience and unsupervised pre-training. In:
Proceedings of the 38th International Conference on Machine Learning, ICML
2021. vol. 139. PMLR (2021)

18. Lei, L., Tan, Y., Dahlenburg, G., Xiang, W., Zheng, K.: Dynamic energy dis-
patch based on deep reinforcement learning in IoT-driven smart isolated micro-
grids. IEEE Internet of Things Journal 8 (2020)

19. Lesort, T., Díaz-Rodríguez, N., Goudou, J.F., Filliat, D.: State representation
learning for control: An overview. Neural Networks 108, 379–392 (2018). https:
//doi.org/10.1016/j.neunet.2018.07.006

20. Li, M., Canberk, A., Losey, D.P., Sadigh, D.: Learning human objectives from
sequences of physical corrections. In: IEEE International Conference on Robotics
and Automation, ICRA (2021). https://doi.org/10.1109/ICRA48506.2021.9560829

21. Liang, X., Shu, K., Lee, K., Abbeel, P.: Reward uncertainty for exploration in
preference-based reinforcement learning. In: International Conference on Learning
Representations (2022)

22. Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., Tang, J.: Self-supervised
learning: Generative or contrastive. IEEE Trans. Knowl. Data Eng. 35(1) (2023).
https://doi.org/10.1109/TKDE.2021.3090866

23. Liu, Y., Datta, G., Novoseller, E.R., Brown, D.S.: Efficient preference-based re-
inforcement learning using learned dynamics models. CoRR abs/2301.04741
(2023). https://doi.org/10.48550/arXiv.2301.04741

https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.3390/e21070651
https://doi.org/10.3390/e21070651
https://doi.org/10.48550/arXiv.2301.04104
https://doi.org/10.48550/arXiv.2301.04104
https://doi.org/10.48550/arXiv.2301.04104
https://doi.org/10.48550/arXiv.2301.04104
https://doi.org/10.1109/WACV45572.2020.9093406
https://doi.org/10.1109/WACV45572.2020.9093406
https://arxiv.org/abs/2104.13906
https://arxiv.org/abs/2104.13906
http://arxiv.org/abs/1603.06390
http://arxiv.org/abs/1603.06390
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://ai.facebook.com/blog/self-supervised-learning-the-dark-matter-of-intelligence/
https://doi.org/10.1016/j.neunet.2018.07.006
https://doi.org/10.1016/j.neunet.2018.07.006
https://doi.org/10.1016/j.neunet.2018.07.006
https://doi.org/10.1016/j.neunet.2018.07.006
https://doi.org/10.1109/ICRA48506.2021.9560829
https://doi.org/10.1109/ICRA48506.2021.9560829
https://doi.org/10.1109/TKDE.2021.3090866
https://doi.org/10.1109/TKDE.2021.3090866
https://doi.org/10.48550/arXiv.2301.04741
https://doi.org/10.48550/arXiv.2301.04741


RLHF for CPS: One the Potential of Self-Supervised Pretraining 7

24. Metcalf, K., Sarabia, M., Theobald, B.: Rewards encoding environment dynamics
improves preference-based reinforcement learning. CoRR abs/2211.06527 (2022).
https://doi.org/10.48550/arXiv.2211.06527

25. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M.A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540)
(2015). https://doi.org/10.1038/nature14236

26. Moerland, T.M., Broekens, J., Plaat, A., Jonker, C.M.: Model-based reinforcement
learning: A survey. Found. Trends Mach. Learn. 16(1), 1–118 (2023). https://doi.
org/10.1561/2200000086

27. Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain,
S., Kosaraju, V., Saunders, W., Jiang, X., Cobbe, K., Eloundou, T., Krueger,
G., Button, K., Knight, M., Chess, B., Schulman, J.: WebGPT: Browser-assisted
question-answering with human feedback. CoRR abs/2112.09332 (2021), https:
//arxiv.org/abs/2112.09332

28. OpenAI: ChatGPT: Optimizing language models for dialogue (2022), https://
openai.com/blog/chatgpt/, accessed: 2023-01-23

29. Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang,
C., Agarwal, S., Slama, K., Gray, A., Schulman, J., Hilton, J., Kelton, F., Miller,
L., Simens, M., Askell, A., Welinder, P., Christiano, P., Leike, J., Lowe, R.: Train-
ing language models to follow instructions with human feedback. In: Advances in
Neural Information Processing Systems (2022)

30. Park, J., Seo, Y., Shin, J., Lee, H., Abbeel, P., Lee, K.: SURF: Semi-supervised
reward learning with data augmentation for feedback-efficient preference-based re-
inforcement learning. In: International Conference on Learning Representations
(2022)

31. Qi, B., Rashedi, M., Ardakanian, O.: EnergyBoost: Learning-based control of home
batteries. In: Proceedings of the Tenth ACM International Conference on Future
Energy Systems, e-Energy 2019 (2019). https://doi.org/10.1145/3307772.3328279

32. Raman, N.S., Devraj, A.M., Barooah, P., Meyn, S.P.: Reinforcement learning for
control of building HVAC systems. In: 2020 American Control Conference, ACC
2020. IEEE (2020). https://doi.org/10.23919/ACC45564.2020.9147629

33. Reddy, S., Dragan, A.D., Levine, S., Legg, S., Leike, J.: Learning human objec-
tives by evaluating hypothetical behavior. In: Proceedings of the 37th International
Conference on Machine Learning, ICML 2020. vol. 119. PMLR (2020)

34. Schwarzer, M., Anand, A., Goel, R., Hjelm, R.D., Courville, A.C., Bachman, P.:
Data-efficient reinforcement learning with self-predictive representations. In: Inter-
national Conference on Learning Representations (2021)

35. Sekar, R., Rybkin, O., Daniilidis, K., Abbeel, P., Hafner, D., Pathak, D.: Planning
to explore via self-supervised world models. In: Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML 2020. vol. 119. PMLR (2020)

36. Sermanet, P., Xu, K., Levine, S.: Unsupervised perceptual rewards for imitation
learning. In: International Conference on Learning Representations (2017)

37. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.P., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep
neural networks and tree search. Nature 529 (2016)

https://doi.org/10.48550/arXiv.2211.06527
https://doi.org/10.48550/arXiv.2211.06527
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1561/2200000086
https://doi.org/10.1561/2200000086
https://doi.org/10.1561/2200000086
https://doi.org/10.1561/2200000086
https://arxiv.org/abs/2112.09332
https://arxiv.org/abs/2112.09332
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.1145/3307772.3328279
https://doi.org/10.1145/3307772.3328279
https://doi.org/10.23919/ACC45564.2020.9147629
https://doi.org/10.23919/ACC45564.2020.9147629


8 T. Kaufmann et al.

38. Singh, A., Yang, L., Finn, C., Levine, S.: End-to-end robotic reinforcement learning
without reward engineering. In: Robotics: Science and Systems XV (2019). https:
//doi.org/10.15607/RSS.2019.XV.073

39. Smith, L.M., Kostrikov, I., Levine, S.: A walk in the park: Learning to walk in 20
minutes with model-free reinforcement learning. CoRR abs/2208.07860 (2022).
https://doi.org/10.48550/arXiv.2208.07860

40. Stiennon, N., Ouyang, L., Wu, J., Ziegler, D.M., Lowe, R., Voss, C., Radford, A.,
Amodei, D., Christiano, P.F.: Learning to summarize from human feedback. CoRR
abs/2009.01325 (2020), https://arxiv.org/abs/2009.01325

41. Williams, E.C., Gopalan, N., Rhee, M., Tellex, S.: Learning to parse natural lan-
guage to grounded reward functions with weak supervision. In: 2018 IEEE Inter-
national Conference on Robotics and Automation, ICRA (2018). https://doi.org/
10.1109/ICRA.2018.8460937

42. Wirth, C., Akrour, R., Neumann, G., Fürnkranz, J.: A survey of preference-based
reinforcement learning methods. J. Mach. Learn. Res. 18 (2017), http://jmlr.org/
papers/v18/16-634.html

43. Wu, P., Escontrela, A., Hafner, D., Goldberg, K., Abbeel, P.: DayDreamer: World
models for physical robot learning. CoRR abs/2206.14176 (2022). https://doi.
org/10.48550/arXiv.2206.14176

44. Yarats, D., Kostrikov, I., Fergus, R.: Image augmentation is all you need: Regu-
larizing deep reinforcement learning from pixels. In: International Conference on
Learning Representations (2021)

45. Yu, T., Lan, C., Zeng, W., Feng, M., Zhang, Z., Chen, Z.: PlayVirtual: Augment-
ing cycle-consistent virtual trajectories for reinforcement learning. In: Advances in
Neural Information Processing Systems (2021)

https://doi.org/10.15607/RSS.2019.XV.073
https://doi.org/10.15607/RSS.2019.XV.073
https://doi.org/10.15607/RSS.2019.XV.073
https://doi.org/10.15607/RSS.2019.XV.073
https://doi.org/10.48550/arXiv.2208.07860
https://doi.org/10.48550/arXiv.2208.07860
https://arxiv.org/abs/2009.01325
https://doi.org/10.1109/ICRA.2018.8460937
https://doi.org/10.1109/ICRA.2018.8460937
https://doi.org/10.1109/ICRA.2018.8460937
https://doi.org/10.1109/ICRA.2018.8460937
http://jmlr.org/papers/v18/16-634.html
http://jmlr.org/papers/v18/16-634.html
https://doi.org/10.48550/arXiv.2206.14176
https://doi.org/10.48550/arXiv.2206.14176
https://doi.org/10.48550/arXiv.2206.14176
https://doi.org/10.48550/arXiv.2206.14176

	Reinforcement Learning from Human Feedback for Cyber-Physical Systems: On the Potential of Self-Supervised Pretraining

