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environment.

Goal: Find policy    that maximizes

Defining rewards that induce desired behavior is 
challenging→ RLHF

From Human Feedback

Feedback on trajectories
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Pairwise Comparison Example

Artificial Intelligence and Machine Learning3 1 Jeon et al., 2020, NeurIPS

Assumption: Labeler makes reward-rational1 choice.

Note: This slide contains videos, which have been replaced by 
single frames for the PDF export. 



Labeling is Important
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◼ Real human feedback is inconvenient.

◼ Researchers often synthesize feedback for 
evaluation.

◼ Our argument: This is not enough!

Image: Freepik.com
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◼ Response biases, inconsistent behavior

◼ Acquiescence bias

◼ Primacy/recency effects

◼ Unobserved factors

◼ Motivation

◼ Distraction

◼ Disagreements

◼ Intra-labeler (fatigue, experience, …)

◼ Inter-labeler

◼ Researcher-labeler (misunderstandings)
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◼ Optimize the labeling task 

◼ Goal: obtain more feedback for the same amount of human time

◼ Extend or replace comparison queries (e.g.  explanations, more response options, long interactions)

Strongly2

prefer 𝝉𝟐

Strongly        
prefer 𝝉𝟏

Equal preference

2 Wilde et al., 2022, IJRR 
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Opportunities of Real Human Feedback

Artificial Intelligence and Machine Learning7

◼ Optimize the labeling task via:

◼ More efficient query selection and 
presentation3

◼ Aided evaluation

◼ Using implicit feedback

3 Zhang et al., 2022, NeurIPS;                         Images: Leonardo.Ai, Wikipedia Commons 



Future applications and research ideas
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Designing a platform to make collecting HF easier.3

Systematically reviewing research on best practices in collecting HF. 

→ Facilitate this with platform.

Facilitate collaboration across disciplines to enhance research in RLHF.

3 Metz et al., 2023, ILHF Workshop ICML
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◼ Synthesized feedback misses crucial aspects of real feedback.

◼ Real feedback poses challenges, but also provides opportunities.

◼ It is important to incorporate these aspects into RLHF research.

◼ We need more research to systematically compare different feedback 
modes. 
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Take-Away
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◼ Synthesized feedback misses crucial aspects of real feedback.

◼ Real feedback poses challenges, but also provides opportunities.

◼ It is important to incorporate these aspects into RLHF research.

◼ We need more research to systematically compare different feedback 
modes. 

Questions?More at our poster 
and online:
timokaufmann.com
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https://timokaufmann.com/publications/#kaufmann2023challenges
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