
▪ Reinforcement Learning (RL): 
Learning behavior from rewarded 
interaction with an environment.
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Reinforcement Learning

▪ Extensions to comparison queries such as
• explanations7,
• additional response options8 and
• longer interactions,

may provide additional information.

▪ Evaluating alternative feedback 
modalities may lead to more natural ways 
of communicating preferences. 

▪ Developing techniques for aided 
evaluation may allow us to leverage 
the human’s strengths8.

▪ Optimizing query presentation may 
simplify the feedback task9.

▪ Optimizing query selection may
generate easier questions10.

▪ Using implicit feedback may provide 
additional labels for free.

▪ Implicit reward shaping may aid the
RL algorithm in learning1.

Challenges of Real Human Feedback Opportunities of Real Human Feedback

▪ Response biases, such as acquiescence 
bias4, primacy/recency effects5, satisficing4

and straightlining6, may invalidate the 
human choice model.

▪ Motivation may aggravate or weaken 
response biases.

▪ Fatigue leads to decreasing label quality 
over time (intra-labeler disagreement).

▪ Experience leads to increasing quality 
over time (intra-labeler disagreement).

▪ Misunderstandings may invalidate 
feedback and lead to researcher-labeler 
disagreement2.

▪ Expertise may lead to varying
responses from different labelers 
(inter-labeler disagreement).

▪ Distractions may reduce data quality 
and introduce inconsistencies.

▪ Uneven labeling rate may violate
RLHF algorithm assumptions1.

User Study Design Decisions

▪ The order of queries is important, especially 
considering effects such as fatigue and experience.

▪ Detailed guidelines can help to reduce inter-labeler 
and researcher-labeler disagreements.

▪ Incentives should be well-aligned with the researcher’s 
goals to avoid aggravating response biases.

▪ Quality control can help reduce the impact of 
response biases and misaligned incentives.

▪ Careful participant selection can supplement quality 
control and is especially important in crowd-sourcing 
settings.

▪ Interface-driven limitations such as occlusion of 
important information can be avoided by careful 
design of the user-interface.

Take-Away

From Human Feedback Or Synthetic Feedback?

▪ Defining rewards that induce desired 
behavior is challenging1 → Reinforcement
Learning from Human Feedback (RLHF).

▪ Many successful applications, e.g., games1,
continuous control1, instruction fine-tuning2

(ChatGPT), etc.

▪ Real human feedback is inconvenient.

▪ Researchers often synthesize feedback for evaluation3.

▪ Our argument: This is problematic!

▪ Real feedback poses challenges, but also
provides opportunities.

▪ Synthesized feedback misses crucial aspects 
of real feedback.

▪ It is important to incorporate these aspects 
into RLHF research.

▪ User study design and execution are challenging.

▪ Future work should attempt to reduce this 
barrier and make real human feedback 
accessible to more researchers.

▪ Goal:  Find policy     that maximizes
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