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Abstract

Defining a reward function is usually a challenging but critical
task for the system designer in reinforcement learning, es-
pecially when specifying complex behaviors. Reinforcement
learning from human feedback (RLHF) emerges as a promis-
ing approach to circumvent this. In RLHF, the agent typically
learns a reward function by querying a human teacher using
pairwise comparisons of trajectory segments. A key question
in this domain is how to reduce the number of queries nec-
essary to learn an informative reward function, since asking
a human teacher too many queries is impractical and costly.
To tackle this question, most existing methods mainly focus
on improving exploration, introducing data augmentation or
designing sophisticated training objectives for RLHF, while
the potential of query generation and selection schemes have
not been fully exploited. In this paper, we propose DUO, a
novel method for diverse, uncertain, on-policy query gener-
ation and selection in RLHF. Our method produces queries
that are (1) more relevant for policy training (via an on-policy
criterion), (2) more informative (via a principled measure of
epistemic uncertainty), and (3) diverse (via a clustering-based
filter). Experimental results on a variety of locomotion and
robotic manipulation tasks demonstrate that our method can
outperform state-of-the-art RLHF methods given the same to-
tal budget of queries while being robust to possibly irrational
teachers.

1 Introduction
In reinforcement learning (RL), the reward function is typi-
cally specified to convey the task objective to the agent and
provide guidance for learning to accomplish the task. A well-
formulated reward function is fundamental for successful task
learning. However, how to define a proper reward function re-
mains an open problem (Amodei et al. 2016; Zhu et al. 2020),
especially for complex tasks with large or continuous state
and action spaces. Specifically, while a sparse reward func-
tion is easy to define, it can hardly guide the agent to reach
the goal effectively. In contrast, denser reward functions can
provide more informative learning signals but take significant
effort for the system designer to formulate and may suffer
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from reward hacking (Skalse et al. 2022), where the agent
learns to achieve high return despite undesirable behavior by
exploiting flaws in the incorrectly-defined reward function.

To tackle the difficulty of defining a reward function, var-
ious directions have been explored in the past, including
inverse reinforcement learning (Arora and Doshi 2021), imi-
tation learning (Hussein et al. 2017), reward learning from
demonstrations (Ibarz et al. 2018), and reinforcement learn-
ing from human feedback (RLHF) (Kaufmann et al. 2023).
Compared with other directions, RLHF has recently drawn
much attention due to its simplicity, scalability, and promising
empirical results in many domains, such as control (Chris-
tiano et al. 2017), image generation (Lee et al. 2023), and
language model alignment (Ouyang et al. 2022; OpenAI
2022).

In RLHF, instead of specifying a reward function explicitly,
it proposes to learn the reward function from human prefer-
ence feedback while simultaneously updating a policy via
RL training using the learned reward function. In this setting,
preference feedback is generally acquired by generating and
selecting queries to be asked to a human teacher (oracle). The
most typical query is a pairwise comparison of trajectories
(Christiano et al. 2017; Lee, Smith, and Abbeel 2021; Lee
et al. 2021), which we also focus on in this work.

A key question in RLHF is that of query efficiency, i.e.,
how to generate and select informative queries so that a good
policy can be learned with fewer queries. Existing RLHF
methods (Christiano et al. 2017; Lee, Smith, and Abbeel
2021; Park et al. 2022) directly take inspiration from common
active learning approaches by selecting queries based on an
estimate of the model uncertainty about the oracle’s response.
The rationale is that such queries are more informative and
would help learn a good reward function faster. However, they
still require a lot of queries to solve complex tasks, leaving
much room for efficiency improvement.

By carefully examining the existing RLHF studies, we
identify three limitations that commonly impede query effi-
ciency. First, many RLHF methods select queries comparing
off-policy trajectory segments regardless of their probabil-
ity of being generated by the current policy. Unfortunately,
asking queries about off-policy trajectories does not help
obtain a better reward function to improve the current pol-



icy. Second, many methods rely on a heuristic uncertainty
evaluation. In the context of RLHF, this uncertainty can in-
clude both aleatoric uncertainty (i.e., inherent randomness
in the oracle’s response) and epistemic uncertainty (i.e., lack
of knowledge about the ground-truth rewards in the learned
model) (Nguyen, Shaker, and Hüllermeier 2022). The extra
capturing of aleatoric uncertainty leads to queries whose true
preferences are inherently hard to determine, resulting in a
large cognitive burden on the human teacher. Third, many
methods ask a batch of queries to the human teacher, re-
gardless of similarities between queries, referred to as query
similarity. This introduces extra redundancy and hurts the
query efficiency.

To overcome these limitations, this paper presents DUO, a
novel query generation and selection scheme for RLHF. DUO
meticulously selects Diverse, Uncertain, On-policy queries
so that the overall query efficiency can be significantly im-
proved, illustrated in Figure 1. To compare trajectories that
are more relevant to the current policy, DUO uses prioritized
sampling to favor on-policy trajectories during query gen-
eration. To accurately capture the query uncertainty, DUO
evaluates the epistemic uncertainty of a query in a princi-
pled way (Hüllermeier, Destercke, and Shaker 2022) with an
ensemble of reward networks.

To further reduce the query redundancy in a batch, DUO
proposes a simple yet effective clustering-based filter to select
representative and diverse queries from the batch.

Our contributions are threefold: (a) We identify three
sources of query inefficiency in previous RLHF methods
(Section 2): off-policy trajectory, heuristic uncertainty evalu-
ation, and query similarity. (b) We formulate a novel query
generation and selection method to specifically address those
three sources of issues (Section 4). (c) We experimentally
demonstrate its efficiency on a large range of locomotion and
robotic manipulation tasks (Section 5). DUO can outperform
baseline methods with the same or even smaller budget of
feedback. Each proposed technique individually contributes,
with the combination having synergetic effects. In addition,
DUO is demonstrated to be quite robust in terms of teachers’
potential irrationalities and different algorithm designs.

2 Related Work
RLHF is a machine learning paradigm that learns behavior
through human feedback, originating from early work on
preference-based reinforcement learning (PbRL) and being
scaled up to modern deep RL (Wirth et al. 2017; Christiano
et al. 2017). We review related work on RLHF, concentrating
on query generation and selection. Specifically, we discuss
generating relevant candidate queries, selecting informative
queries from this pool, and ensuring query diversity.

Relevant Queries In RLHF, we first need to generate can-
didate queries for the human teacher from a set of trajectories.
Most existing works randomly sample a subset of collected
trajectories and then segment and pair them (Christiano et al.
2017; Lee, Smith, and Abbeel 2021; Park et al. 2022; Liu
et al. 2022). Our method, DUO, improves by prioritizing
on-policy trajectories, arguing that off-policy trajectories do
not lead to actionable reward model improvements. Lindner

et al. acknowledge this and propose selecting queries based
on their information gain on the optimal policy instead of the
reward model, which is promising but computationally de-
manding. We propose prioritizing trajectories which are more
likely under the current policy (on-policiness), a criterion that
is easy to compute. Recent work by Hu et al. (2024) also rec-
ognizes this issue and proposes sampling trajectories which
are more on-policy by only selecting recent experiences. In
contrast, DUO determines on-policiness by the likelihood
of the trajectory under the current policy, a more principled
approach that can select older yet still relevant trajectories.

Informative Queries It is crucial to focus on the most infor-
mative queries to learn an effective reward model with fewer
queries. This active learning problem is typically addressed
by selecting queries based on the reward model’s prediction
uncertainty. Uncertainty estimation methods can be broadly
divided into Bayesian and non-Bayesian ones. Bayesian meth-
ods, like Gaussian processes (Daniel et al. 2014), are com-
putationally costly and often impractical for deep RL due to
scalability issues and restrictive assumptions, such as that
reward function is linear in a set of hand-engineered features
(Sadigh et al. 2017; Bıyık and Sadigh 2018; Bıyık et al. 2020;
Biyik, Talati, and Sadigh 2022). Instead, we focus on non-
Bayesian methods using an ensemble of reward networks.
Such an ensemble allows for the approximation of epistemic
(reducible) uncertainty by quantifying the spread of the en-
semble’s predictions, e.g., by measuring the variance of the
predictions (Christiano et al. 2017; Park et al. 2022). Lee,
Smith, and Abbeel propose an entropy-based criterion, focus-
ing on segment pairs with predicted preference probabilities
close to 0.5. This includes irreducible (aleatoric) uncertainty
(Hüllermeier and Waegeman 2021), present in queries where
true preferences are inherently hard to determine. While em-
pirical evaluations with a synthetic human oracle show perfor-
mance similar to ensemble disagreement, we argue that this
is an instance of heuristic uncertainty evaluation that is not
well-suited in practice since it tends to choose queries that
place a large burden on the human teacher. We use the length
of the interval of ensemble predictions in DUO, which, simi-
lar to the ensemble disagreement, is a measure of epistemic
uncertainty with solid theoretical foundations (Hüllermeier,
Destercke, and Shaker 2022; Sale, Caprio, and Hüllermeier
2023).

Diverse Queries Query diversity is regarded as important
because queries are usually presented to the oracle in a batch-
based fashion. Even though the current reward model may
be highly uncertain about a batch of queries, the informa-
tion contained in the batch may be redundant. Bıyık and
Sadigh recognize this and take inspiration from literature on
batch-active learning to evaluate multiple selection schemes
focusing on diversity. Though we employ a similar idea to
their clustering methods, DUO differs in key aspects: (1)
Instead of representing queries as linear feature differences
with specifically hand-coded features for each task, we do
not make such strong assumption by using reward networks,
and instead directly represent queries as sequences of re-
ward differences. Interestingly, representing queries as linear
feature differences amounts to aggregating over time, while
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Figure 1: DUO consists of two main phases: query generation and query selection. Generation starts from the buffer of the
agent’s trajectories. A subset of trajectories is sampled with priority regarding on-policiness under the current policy. We then
perform random segmenting and pairing, followed by filtering based on whether or not the decision boundary is included in the
ensemble’s predictions. The selection from the resulting candidate queries is based on the estimated epistemic uncertainty of the
preference predictions and is further filtered by diversity using k-means clustering.

representing them as reward differences amounts to aggre-
gating over linear features. Note that without linear features,
working in the space of feature differences may not be well-
justified, which motivates us to resort to the sequence of
reward differences instead. (2) This representation allows us
to use K-means clustering, where the query closest to each
found cluster is selected, without needing a more complex
clustering algorithm. (3) We automatically determine the K
value for K-means using the elbow method, leading to a
more adaptive query selection scheme.

3 Preliminaries
Reinforcement Learning In a standard reinforcement
learning (RL) problem, at every time step t, an agent per-
forms an action at ∈ A given current state st ∈ S, moves
to a new state st+1 ∈ S, and receives an immediate reward
r(st, at). The RL agent’s objective is to learn how to select
actions (i.e., policy π(at | st)) such that it maximizes its
expected accumulated rewards.

Reinforcement Learning from Human Feedback In
RLHF (Christiano et al. 2017; Lee, Smith, and Abbeel 2021),
immediate rewards are not known. Instead, it is assumed that
an oracle can provide preference feedback to comparison
queries between trajectory segments, which is used to guide
the agent to finish the task.

Formally, a segment σ = (sk, ak, . . . , sk+h−1, ak+h−1)
is a sequence of state-action pairs. Given a query (σ0, σ1),
the oracle can declare preference y for the former (σ0 ≻ σ1,
y(0) = 1) or the latter (σ1 ≻ σ0, y(1) = 1). Here we ignore
the case where the two segments are considered equivalent
for a perfect oracle. The query of pairwise comparison and
corresponding preference feedback is denoted as (σ0, σ1, y)
and stored in a dataset D.

Since rewards are unknown, the usual approach in RLHF is
to simultaneously learn a reward model r̂(s, a) fitting the ora-
cle preferences and train a policy π using the learned rewards.
Following previous work (Lee, Smith, and Abbeel 2021), we
assume that the reward model r̂ψ is an ensemble of N reward
networks (r̂ψi parametrized by ψi for i ∈ {1, . . . , N}) with
ψ = (ψ1, . . . , ψN ) and the policy πϕ is a neural network
parametrized by ϕ. Generally, parameters of both the policy

and reward model are updated by interleaving the following
two steps:
• Step 1 (agent learning): The agent interacts with the en-

vironment using policy πϕ to collect trajectories. Policy
πϕ is then updated with such trajectories via existing RL
algorithms to maximize the expected return given by the
reward model r̂ψ .

• Step 2 (reward learning): Queries in the form of pairwise
segments are generated and selected from the collected
trajectories. Each reward network r̂ψi is then optimized
to fit oracle’s feedback on these queries.

In principle, any RL algorithm could be employed in Step
1. In this paper, we specifically use the sample-efficient off-
policy algorithm SAC (Haarnoja et al. 2018), as in PEBBLE
(Lee, Smith, and Abbeel 2021), due to its entropy-regularized
objective function, making it more robust to reward approxi-
mation.

In Step 2, reward learning is formulated as a supervised
classification problem (Christiano et al. 2017) where the
oracle’s feedback is assumed to follow the Bradly-Terry
model (Bradley and Terry 1952). In this model, with re-
ward model r̂ψ , the preference feedback σ1 ≻ σ0 to a query
(σ0, σ1) has the following probability:

Pψ[σ
1 ≻ σ0] =

e
∑
t r̂ψ(s

1
t ,a

1
t )

e
∑
t r̂ψ(s

0
t ,a

0
t ) + e

∑
t r̂ψ(s

1
t ,a

1
t )

, (1)

where segment σj for j ∈ {0, 1} is composed of pairs (sjt , a
j
t )

and r̂ψ(s
j
t , a

j
t ) is the average output of the N reward net-

works r̂ψi for i ∈ {1, . . . , N}. Given the dataset D of prefer-
ence feedback, the task of learning the reward model r̂ψ can
be expressed as minimizing the following cross-entropy loss:

LReward = − E
(σ0,σ1,y)∼D

[
y(0) logPψ[σ

0 ≻ σ1]+

y(1) logPψ[σ
1 ≻ σ0]

] (2)

4 Method
To improve batch query efficiency, we specify desired queries
as on-policy, uncertain, and diverse queries, defined and
explained next.



On-policy queries involve segments of trajectories gener-
ated by a current policy π. Asking such queries can accelerate
RLHF training and reduce the total number of queries asked
to the oracle. Indeed, while improving the reward approxima-
tion, especially in the state-action region visited by optimal
policies, seems to be intuitively reasonable, improving it on
state-action regions that cannot be visited by the current pol-
icy π may be wasteful in terms of query efficiency, since
better reward approximation in those regions does not help
estimate a better policy gradient to train π. The policy gradi-
ent is defined on the state-action pairs visited by the current
policy, so a more reliable reward model trained on these pairs
would help the most the RL training.

(Epistemically) uncertain queries are queries for which
the current learned reward model is uncertain about the pre-
dicted preferences. Asking queries on which the current re-
ward model is already certain could be superfluous. This
is arguably one of the most relevant properties for efficient
querying and thus extensively studied in prior work. However,
as we show in our work, it is not the only important aspect.

Diverse queries are key when asking queries in a batch
setting. Asking two queries containing similar information,
even if they are both highly uncertain, would be redundant,
since the feedback to one query would provide a good hint
for the other. A good notion of diversity is crucial in this
context.

Conceptually, our approach to query generation and se-
lection can be written as a composition of three functions
applied to a replay buffer B of trajectories:

ξD(ξU (ξO(B))) , (3)

where ξD, ξU , and ξO return a subset of queries that are
diverse, uncertain, and on-policy, respectively. Next, we pro-
vide a high-level description of ξO, ξU , and ξD. Their more
detailed implementations can be found in Algorithm 1 in the
supplementary material.

4.1 Implementation of Function ξO for On-Policy
Queries

Recall that B is the replay buffer which stores all trajectories
collected during the interaction between the agent and the
environment. From a high-level point of view, function ξO(B)
should generate the subset in which queries are formed by
segments generated by the current policy π. While concep-
tually simple, this has an important drawback: It requires
costly sampling of many trajectories using the current policy
π, neglecting the wealth of trajectories from similar policies
already stored in the replay buffer.

Instead, we propose to implement ξO(B) via priority sam-
pling over all trajectories (generated by π and past policies)
in the replay buffer B, favoring trajectories that have a higher
probability of being generated by π. Formally, the priority is
derived from the following on-policiness measure

O(τ) =

T−1∑
t=0

log π (at | st) , (4)

where τ = (s0, a0, s1, . . . , sT ) is a T -length trajectory. This
measure computes the log probability of a trajectory being

generated by π, ignoring the unknown transition probabilities.
Higher values indicate a trajectory has a higher chance to
be generated by π. Trajectories are then sampled using a
probability P(τ) proportional to its rectified Z-score O′(τ):

P(τ) ∝ O′(τ) = max

(
0,
O(τ)− µO(B)

σO(B)

)
, (5)

where µO(B) and σO(B) are the empirical mean and standard
deviation of the “on-policy” measure over the trajectories in
B. ξO(B) generates on-policy queries by pairing randomly
chosen segments from those sampled trajectories.

4.2 Implementation of Function ξU for Uncertain
Queries

Let QO = ξO(B) be the set of on-policy queries generated
in the previous step. From those queries, we seek to select
the presumably most informative ones as a sample. To this
end, we rely on the well established principle of uncertainty
in active learning, that is, the learner’s current uncertainty
in predicting the outcome of a query is a good indicator of
the (expected) informativeness of that query. As a first filter,
we therefore remove from QO all queries with consensual
ensemble predictions, meaning that all ensemble members
favor σ1 over σ0 (i.e. Pψi [σ

1 ≻ σ0] > 1/2 for all i ∈
{1, . . . , N}), or the opposite (see Appendix B.2 for details).
To prioritize the remaining candidate queries, we quantify
their uncertainty in terms of a suitable measure. Instead of
looking at the total uncertainty, we focus on the epistemic
part of the predictive uncertainty. As this is the reducible part
of the uncertainty, it is arguably more relevant in the context
of active learning (Nguyen, Shaker, and Hüllermeier 2022).

Recall that the preference feedback to a query (σ0, σ1) is
supposed to follow a Bradly-Terry distribution as shown in
Equation (1), which is a Bernoulli distribution Ber(θ) with
parameter θ = Pψ[σ1 ≻ σ0]. Thus, even if the learner has
perfect knowledge of the reward model (parameter ψ and
hence parameter θ), it cannot deterministically predict the
feedback due to remaining aleatoric uncertainty (stochas-
ticity of the oracle). This uncertainty is further increased
by epistemic uncertainty, namely, uncertainty about the true
model θ.

Imagine the learner quantifies this uncertainty by a (second-
order) distribution Pθ, using the expectation of that distribu-
tion as its current best guess θ̂. In the literature, different
proposals for quantifying the (total) uncertainty associated
with θ̂ and for (additively) decomposing this uncertainty into
an aleatoric and an epistemic part have been proposed; e.g.,
the Shannon entropy (of Ber(θ̂)) decomposes into conditional
entropy (of Pθ) and mutual information. In this regard, differ-
ent measures of epistemic uncertainty have been justified in
terms of meaningful properties. Broadly speaking, all these
measures quantify the dispersion of Pθ in one way or the
other, e.g., in terms of mutual information or variance.

Ensemble learning, which is also used in our approach, is
commonly viewed as a practical means to produce a (discrete)
approximation of the distribution Pθ. More specifically, from
a Bayesian perspective, the ensemble predictions can be seen
as an approximation of the posterior predictive distribution.



Correspondingly, continuous measures are replaced by their
discrete counterparts, e.g., mutual information by Jensen-
Shannon divergence or variance by sample variance.

These measures may require a large number of ensemble
elements to produce an accurate estimation. Instead, in our
approach, we adopt the length of the predicted preference
interval to quantify the epistemic uncertainty associated with
a query (σ0, σ1). Formally, it is defined as maxi θ̂i−mini θ̂i
where θ̂i = Pψi(σ

1 ≻ σ0) is the prediction produced by
the ith ensemble member. While simple, this measure has
been theoretically axiomatized (Hüllermeier, Destercke, and
Shaker 2022) and is well-suited when the ensemble size
is small. The queries are then prioritized in terms of this
measure, and QU = ξU (QO) is obtained by selecting the
queries with the highest priority.

4.3 Implementation of Function ξD for Diverse
Queries

Let QU = ξU (QO) be the set of uncertain and on-policy
queries. Given QU , containing redundant queries, we select
the most representative ones via a clustering-based filter.

Redundancy or similarity among queries can be evaluated
in many different spaces, e.g., state or observation space, or
space of linear feature differences (see also Section 2 for
related work). Indeed, one may consider defining query simi-
larity via trajectory similarity in a state or observation space
(possibly including actions). However, such representation
may not be effective for our purpose since many seemingly
dissimilar trajectories have similar values. As a sequence,
query diversity based on such similarity definition may lead
to generating diverse queries about the many diverse bad
trajectories, which may not promote efficient RL training.
Measuring query diversity in the space of linear feature differ-
ences (Bıyık and Sadigh 2018) is another possibility, however
it cannot be readily implemented in our setting, since we do
not assume a linear reward approximation scheme.

Therefore, we instead resort to representing queries in
the space of reward differences. While it is possible that
some particular features of trajectories may be ignored
in this representation, we conjecture that this value space
may capture important aspects relevant for reward learn-
ing. More specifically, we design function ξD by represent-
ing queries in the space of predicted reward differences
which imply information about preferences. Formally, a
query (σ0, σ1) corresponds to a vector ∆r̂ = r̂1 − r̂0 where
r̂i =

(
r̂ψ(s

i
k, a

i
k), . . . , r̂ψ(s

i
k+h−1, a

i
k+h−1)

)
for i ∈ {0, 1}

denotes the predicted reward sequence given the current re-
ward model for segment σi = (sik, a

i
k, . . . , s

i
k+h−1, a

i
k+h−1).

If the predicted differences ∆r̂ of different queries are simi-
lar, asking all such queries to the oracle may be redundant.
Alternatively, one may understand this reward difference
space as a value embedding space to describe queries, where
the embedding is obtained from the trained reward model.

In this predicted reward difference space, we apply a
clustering-based filter (i.e., K-means clustering) to select
representative queries whose reward difference sequences
are the closest to the clustering centers in terms of Mean
Squared Error distance. Since the number of representative

queries may depend on the particular set QU , the value of
K is adaptively determined by the elbow method. Empirical
results in Section 5 demonstrate the effectiveness of our idea
of selecting representative queries in the predicted reward
difference space via a straightforward clustering-based filter.
It is worth noting that more advanced clustering approaches
could also be applied in our framework when necessary, con-
sidering the trade-off of performance gain and computational
complexity. The diverse queries returned by ξD(QU ) are
finally asked to the oracle. See Appendix B for a detailed
algorithmic description of DUO.

5 Experiments
In this section, we design experiments to investigate the fol-
lowing questions: (1) How does DUO improve SOTA meth-
ods for RLHF in terms of performance and query efficiency?
(2) How robust is DUO to the potential irrationalities of the
simulated teacher? (3) How does each component of DUO
contribute to the performance? (4) How sensitive is DUO
to different hyperparameter settings? (5) How does DUO
perform with a real human teacher involved?

5.1 Experimental Setup
Tasks We evaluate DUO on continuous control tasks, in-
cluding 3 locomotion tasks from DMControl (Tassa et al.
2018) and 4 robotic manipulation tasks from Meta-World (Yu
et al. 2020), similar to prior works (Lee, Smith, and Abbeel
2021; Lee et al. 2021; Park et al. 2022; Liang et al. 2022;
Liu et al. 2022; Hu et al. 2024). We follow the setting where
agents receive synthetic feedback from a scripted teacher,
who provides preferences based on the ground truth reward,
which is not directly observed by agents. With such feedback,
agents learn to solve corresponding tasks guided by the un-
derlying reward function. Performance is measured as the
true average episode return for locomotion tasks and success
rate for manipulation tasks, reporting the mean and standard
deviation across five runs. Evaluation under different types of
irrational scripted teachers as proposed by Lee et al. is also
considered, detailed in Appendix C.1.

Baselines We implement DUO on top of the widely
adopted method PEBBLE (Lee, Smith, and Abbeel 2021)
in this paper. Meanwhile, many other methods based on
PEBBLE have also shown good performance on control
tasks mentioned above, including SURF (Park et al. 2022),
RUNE (Liang et al. 2022), MRN (Liu et al. 2022), and
QPA (Hu et al. 2024). Therefore, we adopt all these SOTA
methods as baselines to demonstrate the effectiveness of our
method. All baselines are evaluated with the original settings
listed in their paper. More details are provided in Appendix
A. Besides, considering all methods employ SAC for policy
learning, we also measure the performance of SAC using the
ground truth reward function as an upper bound.

Implementation of DUO Apart from query generation and
selection schemes, DUO follows the general architecture of
PEBBLE. Unless stated otherwise, we also model the target
reward function as an ensemble of three neural networks. See
Appendix C.2 for more implementation details.
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Figure 2: Learning curves on locomotion tasks as measured
on the ground truth reward. The solid line and shaded re-
gions represent the mean and standard deviation, respectively,
across five runs. The vertical dashed lines indicate the end of
the querying process.

5.2 Benchmark Tasks with Unobserved Rewards
Locomotion Tasks from DMControl We compare DUO
with the other 5 baselines on 3 typical DMControl tasks:
Walker walk, Cheetah run, and Quadruped walk, respectively.
All approaches share the same query budget under the same
task for a fair comparison. Figures 2(a) to 2(c) show the
learning curves of all methods with given budgets on selected
tasks. See Appendix D.2 also for numerically presented re-
sults. Note that the vertical dashed lines in different colors
indicate the end of the query-feedback process for each cor-
responding method. Here all methods run out of the given
budgets, though DUO experiences a longer querying process
resulting from its query selection scheme. That is, with the
diversity filter, DUO finally selects an unfixed number of rep-
resentative queries in each query-feedback session, leading
to a possibly extended querying process.

We find that DUO converges to higher performance than
almost all the other baselines on the three tasks, except for
falling a bit behind QPA on Cheetah run. To be mentioned,
QPA also employs the idea of on-policiness (though with a
different implementation), which the authors demonstrate has
a positive impact on performance improvement. Particularly,
on Quadruped walk, the most complex task in terms of the
dimension of state and action space, DUO outperforms the
baselines significantly and even reaches similar level to SAC.

Given that DUO enjoys a longer querying process, one
may question whether the performance gain of DUO only
comes from the extended querying process and whether other
methods could also achieve the same level with such a query-
ing process. To address this concern, we specifically design
hyperparameters for the baselines to make sure they share
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Figure 3: Learning curves on manipulation tasks as measured
on the success rate. The solid line and shaded regions rep-
resent the mean and standard deviation, respectively, across
five runs. The vertical dashed lines indicate the end of the
querying process.

a querying process similar to DUO. Figure 2(d) shows the
learning curves of all methods in this setting on Quadruped
walk. We see that by extending the querying process, all base-
lines do achieve performance improvement, but DUO still
outperforms others. What’s more, the improvement further
proves the effectiveness of DUO, which achieves automatic
and adaptive querying process extension via diversity filtering
without manually designing hyperparameters. See Appendix
D.1 for detailed discussion. All these results demonstrate
that DUO can solve complex locomotion tasks without an
explicit reward function while improving the query efficiency
of RLHF.

Robotic Manipulation Tasks from Meta-World We also
evaluate all methods on four Meta-World tasks: Sweep into,
Drawer open, Door open, and Window open. Figure 3 shows
the learning curves of all methods on each manipulation task
given the query budget. DUO still outperforms the baselines
significantly in all considered tasks except for Door open,
where all methods converge to a similar final performance.
However, even there, DUO learns faster than other baselines,
implying that DUO is more query-efficient.Besides, here
in Door open, the query budget is actually not used up for
DUO. DUO only needs about 2760 queries to achieve such
performance, while other baselines require almost the whole
budget of 5000 queries. These results further demonstrate
that DUO can achieve better query efficiency on a variety of
complex tasks.

5.3 Robustness to Irrationalities
Previous experiments are conducted with a perfectly rational
teacher that provides preference feedback strictly based on
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Figure 4: Sensitivity study on different tasks. Figure 4(a) and
Figure 4(b) show results of different query budget, and Fig-
ure 4(c) and Figure 4(d) show results of different predefined
query batch size.

the difference in the ground truth returns. In practice, real
humans are likely to have difficulty answering queries with
perfect rationality. To evaluate robustness of DUO to potential
irrationalities, we adopt feedback from five types of scripted
irrational teachers (Lee et al. 2021) on several tasks. Details
about various irrationalities are provided in Appendix C.1.

We provide results of all methods under these irrationali-
ties on different tasks in Appendix D.5. Results on Quadruped
walk in Figure 7 show that DUO performs consistently better
than almost all the baselines except that with the mistake
teacher, who might provide wrong feedback with a certain
probability. DUO works a bit worse than QPA but still com-
petitively. Similar phenomenon can also be observed in Fig-
ure 8 on Walker walk. These results imply that DUO is quite
robust to different kinds of irrationalities, which is of crucial
importance for real-world applications.

5.4 Ablation Study
To figure out how the proposed components contribute to
the final performance of DUO, we evaluate the performance
in the absence of each component on various tasks (see Ap-
pendix D.3.). Figure 5 shows that each component has a
positive influence on the final performance, which means
both query generation (on-policiness) and query selection
(uncertianty and diversity) play an important role in improv-
ing query efficiency, and their proper combination makes it
possible for DUO to outperform other baselines.

5.5 Sensitivity Study
Basically we basically follow the general setting in previous
work. To investigate the robustness of DUO, we evaluate
DUO’s performance on various tasks under different hyperpa-

rameter settings, that is, different query budget and different
predefined query batch size (i.e., number of queries per feed-
back session).

Figure 4 shows partial results of DUO with different set-
tings on several complex locomotion and robotic manipu-
lation tasks. We see that with smaller query budget, DUO
still outperforms significantly most baselines consistently as
shown in Figures 4(a) and 4(b), which implies DUO is not
only robust to different hyperparameters but also very query-
efficient especially for complex tasks with limited queries.
Besides, as Figures 4(c) and 4(d) show, given the same bud-
get, even with different predefined query batch size, DUO can
ask necessary number of queries per feedback session, which
is reflected on the spread of querying process, and converge
to similar final performance. See Appendix D.4 for results
about different query budgets and query batch sizes on more
tasks. We also provide empirical results under other different
settings, including query frequency and segment size, which
further demonstrate the robustness and effectiveness of DUO.

5.6 User Study

To illustrate that DUO is also effective in realistic settings, we
perform a user study where a human user (already familiar
with the task) guides the agent. This is done in a Quadruped
environment, which is also considered by Lee, Smith, and
Abbeel (2021). Here, the human hopes the agent could learn
to stand and wave its right hind leg, and thus provides cor-
responding preferences over the presented pairs of video
segments (i.e., queries). The human are asked 150 queries
by the agent trained with PEBBLE and DUO, respectively.
We evaluate 10 times the learned behavior of the agent at
the end of training for both methods. Results show that with
DUO, the agent always successfully performs the desired
behavior but with PEBBLE, it hardly even stands up. Videos
of selected queries and evaluation of trained agents for both
methods are provided in supplementary materials.

6 Conclusion

We present DUO, a query generation and selection scheme
for RLHF that improves query efficiency by focusing on
diverse, uncertain, and on-policy queries. Experiments show
that DUO significantly outperforms current SOTA algorithms
in RLHF in terms of query efficiency and performance on
a variety of locomotion and robotic manipulation tasks. We
also demonstrate that DUO is robust to different types of
irrationalities and hyperparameter settings, and show how
each component of DUO contributes to the final performance.
A user study further validates the effectiveness of DUO in
practical scenarios. Overall, we believe that DUO provides
an effective perspective to future research in RLHF.

However, our current evaluation is limited to control tasks.
Considering the blossom of Large Language Models (LLMs),
we believe that it is worthwhile to migrate our proposition
to alignment of LLMs, which would be a promising area for
future work.
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